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Exact analysis of the spherical Raman-Nath equation 
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Department of Physics, Lanzhou University, Lanzhou, People’s Republic of China 

Received 6 October 1988 

Abstract. An exact solution of the spherical Raman-Nath equation is given. The result is 
applied to discuss photon statistics and squeezing properties of a free-electron laser. 

1. Introduction 

The spherical Raman-Nath equation ( S R N E ) ,  originally derived to describe light 
diffraction by ultrasound [I], is important for discussing photon statistics and squeezing 
properties of a free-electron laser ( F E L )  [2]. In principle, S R N E  is the following 
complicated diff erential-diff erence equation: 

i-  CY(;;“ ,  = ( A  + P I +  v 1 2 ) ~ ; ( ; j ” ~  
d 
d t  

+n{[(n,, - ~ ) ( n ,  + /+  I)]”~C;+~?\)  + [(n,. - I +  1)(n, + I ) ] ” 2 ~ ; ~ i ~ ~ ~ }  (1) 
where A, p, v and fl are constant coefficients and n,,, -n, are up and down limits of 
the integer I, respectively. It is very difficult to solve SRNE exactly because of the 
existence of the non-linear term U/’, so some perturbative theories [3-51 are used. 

The purpose of the present paper is to solve S R N E  exactly with the initial condition 
c ;(b’/’ = which is profitable for discussing the higher non-linear effects of electron 
recoil in a FEL. 

2. The exact solution of SRNE 

One can analyse S R N E  using a generalisation of the linear operational technique [6] 
which has been used in the special case of (1) with v = 0 [3]. The main procedures 
are as follows. 

First, making the transformation 

c;(;jn. = ( - i l l  exp(iax) exp(iPIx) exp{iyx[I+f(n, - n,,)1211MY~;~~) (2) 

x = f l t  (3) 

where 

U 
Y = - g  
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then aefining a series of angular-momentum-type operators L i ,  15: = t[ L:, L1] as 

L;I MY<,;:') = [( nw - I ) (  n, + I + 111 ' I 2 /  M;;;;;  1) 

L;l My?;;#) = [ I  + f( n, - n,. ) ] I  My(:$) 

( 7 )  

L P I M ~ ( < ; ~ )  = [(n,. - I +  1 n ,  + / ) ] " ' ~ ~ ~ ~ i ~ ~ ~ ~  (8) 

(9)  

and substituting (2)-(9) into ( I ) ,  one obtains the following operational differential 
equation on I My(:;;,): 

d 
- I M ~ ~ ; : ~ ~ )  = exp(iyL:')[iyL:'- exp(ipx)L: +exp(-ipx)~!] exp(-iyL42)1My~'~;,). 
d x  

(10) 

The non-linear term L2' appears on the right-hand side of (10). The special transforma- 
tion must be made for one to solve equation (10): 

(11) 
Inserting (11) into (lo),  we find that the three functions A x ) ,  g,,, and h,,, happen to 
obey the set of equations (11) of [3] and the expressions (13) of [3] are still valid, 
only that p is defined by equation (5). Substituting the solutions of A g and h into 
(1 1) and ( 2 ) ,  one obtains 

I M y?; ;? = ex p ( i yxL: ' ) exp ( - 2 h L 1 ex p ( gi , ) L: ) exp ( -h , , L 1 1 M y;;yr). 

q;;. = (-i)q;;rp;;;( 1 - p(x))'"w -v')/* 

x exp i(nW - n, - I )  tan-'  [ v(n,;;)-kL tan ($)I { 

where 

( [ v( n, - n , )  - p]2 I'z 

n2 1 .  s =  4+ 

The result (12) is the exact solution of S R N E  which can be used in a large number of 
physical problems. In the following, particular emphasis is given to photon statistics 
and squeezing properties of a EL. 

3. Photon statistics of a FEL 

For a helical pumped FEL, the symbols throughout the paper are summarised in table 
1. The decay parameter A is introduced because of spontaneous emission, which is 
analogous to an atomic laser. In the following, we take A = 0. 

Assuming that the wiggler initial field is in the coherent state with a mean number 
of photons, /(~,, ,~l*,  and the laser initial field is vacuum which gives n, = 0, then 
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Table 1. 

c speed of light 
e electron charge 
m electron mass 
h = hJ2rr Planck constant 
Eo 
V interaction volume 
P 
Po 
w = c K  
n, , , ,  
I number of exchanged photons 
c;’,.”, 

A decay parameter 
p = -2 KP,/ m 
v = 2 h K  ‘/m 
R = e ’ / 2 m w s , ~  coupling constant 

dielectric constant of free space 

electron axial momentum in the Bambini-Renieri frame 
initial electron momentum in the Bambini-Renieri frame 
laser frequency in the Bambini-Renieri frame 
photon numbers of laser ( r )  and wiggler (w.) 

probability amplitude for interchange I photons in the presence 
of n, laser and n,, wiggler photons 

resonance parameter 
electron recoil parameter 

If the axial momentum of electron is positive in the Bambini-Renieri frame after the 
emission of n,, laser photons, i.e. 

- 2 n w v / g  < 1 ( 1 7 )  
then one can expand p ( x )  over v (in the following, the expansion is to the second order 
of v). Under the limits IawOl2>> 1, R<< 1, lp/Rl>> 1 and  Qlawol =constant a, one gets 

A = ( 1 ’ )  - ( 1 ) ’ -  (1) 

where 

is the laser output, 

is the second-order moment of photon numbers and  A is the photon distribution. 
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To the first order of v, the formula (19) presents: (i) sub-Poissonian (antibunching) 
for p > 0, (ii) Poissonian for p = 0, ( i i i )  super-Poissonian (bunching) for p < 0. The 
linear gain is 

where Go = fvfi21aw,012t3, 6 = fpt. The gain (20) has a positive sign in the 8 < 0 regime 
and  its maximum, 0.54Go, occurs at r3 = -1 .3 .  

To the second order of v, the result (19) can be written in the explicit form: 

A = 8 G o r i n 2 B ( ~ ) 2 { [ ~ - 4 p ( Z ) z ] G ( a )  d sin e 

- 5 8 3  d2 ( T ) ~  sin 8 -656 [ 5 ( Y)] ’} 
where 5 = v ~ a w o ~ 2 / p  and the formula (18)  gives the non-linear gain 

G = Go { [ 1 + 25 (:) ’1 5 (7) + 50 d2  (a) sin 8 ’} . 

The non-linear term 

means saturation for if -= 0 because its sign is always opposite that of the linear gain; 
however, a gain enhancement is obtained for t >  0. In general, 151 c< 1 ,  so the maximum 
of (22), 0.54[1 +25(fl/p)2]Go, occurs at B o =  -1.3(1-f,$) and the other non-linear term 

(e d2 sin e 
2 d e 2 (  8 ) -- - 

is always positive at eo. 

4. Squeezing properties of a FEL 

As in [5], we can study the squeezing properties of a FEL. The expectation value of 
the electron longitudinal momentum is obtained as follows: 

= P O  - 2hK( I )  
and 

= p i  - 4hKpo( I )  + 4h2 K ’( 1 2 ) .  
So the variance is 

(AP)’  = ( p 2 )  - (P)’ 

= 4 h K [ 1=12 t 2  ( y) + G + A ]  
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To the second order of v, the formula (25) gives 
2 (2)2= 16)(u,,1*sin2 B ( F )  . 

The analytic expression (26) can be used to calculate the variance numerically for a 
range of parameters in table 1. 
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